
1

2

[8 marks long question]

1. Explain the classical life cycle model?[2018][2017][2016]

Ans:-Classical life cycle model:

In the Classical life cycle model (also known as the waterfall model), the

development of software proceeds linearly and sequentially from requirement

analysis to design, coding, testing, integration, implementation, and

maintenance. Thus, this model is also known as the linear sequential model.

This model is simple to understand and represents processes which are easy to
manage and measure. The waterfall model comprises different phases and each
phase has its distinct goal. After the completion of one phase, the development
of software moves to the next phase. Each phase modifies the intermediate
product to develop a new product as an output. The new product becomes the
input of the next process. Table lists the inputs and outputs of each phase of
waterfall model.This model consist basically four phases:

(A)Analysis Phase

(b)Design Phase

(c)Coding Phase

(d)Testing phase

(A)Requirements analysis: This phase focuses on the requirements of the
software to be developed. It determines the processes that are to be incorporated
during the development of the software. To specify the requirements, users'
specifications should be clearly understood and their requirements be analyzed.
This phase involves interaction between the users and the software engineers
and produces a document known as Software Requirements Specification(SRS).

(B)Design: This phase determines the detailed process of developing the
software after the requirements have been analyzed. It utilizes software
requirements defined by the user and translates them into software
representation. In this phase, the emphasis is on finding solutions to the
problems defined in the requirements analysis phase. The software engineer is
mainly concerned with the data structure, algorithmic detail and interface
representations.

(C)Coding: This phase emphasizes translation of design into a programming
language using the coding style and guidelines. The programs created should be

3

easy to read and understand. All the programs written are documented
according to the specification.

(D)Testing: This phase ensures that the software is developed as per the user's
requirements. Testing is done to check that the software is running efficiently
and with minimum errors. It focuses on the internal logic and external functions
of the software and ensures that all the statements have been exercised (tested).
Note that testing is a multistage activity, which emphasizes verification and
validation of the software.

2. Explain the different quality factors with a software product?
[2015][2016]

Ans:-Flexibility and Extensibility:

Flexibility is the ability of software to add/modify/remove functionality without

damaging current system. Extensibility is the ability of software to add functionality

without damaging system, so it may be thought as a subset of flexibility. Those

functionality changes may occur acoording to changing requirements, or an obligation if

development process is one of the iterative methods. Change is inevitable in software

development and so, this is one of the most important properties of quality software

Maintainability and Readability

Maintainability is a little similar with flexibility but it focuses on modifications about

error corrections and minor function modifications, not major functional extensibilities.

It can be supported with useful interface definitions, documentations and also self-

documenting code and/or code documentation. The more correct and useful

documentation exists, the more maintainability can be performed.

Performance and Efficiency

Performance is mostly about response time of the software. This response time should

be in acceptable intervals (e.g. max. a few seconds), and should not increase if

transaction count increases. And also, resources are expensive. Efficiency must be

supported with resource utilization. As an exaggerated example, ability of performing a

simple function only by using a 32 processor machine or 1 TB disk space is not

acceptable. Optimal source/performance ratio must be aimed.

Scalability

A scalable system responds user actions in an acceptable amount of time, even if load

increases. Of course more hardware may be added for handling increasing user

transaction, but the architecture should not change while doing this. This is called

vertical scalability. Ability of running on multiple, increasing count of machines is

multiple processing. If the software can perform that type of processing, this is called

horizontal scalability. A preffered scalable system should suit both of these methods.

Availability, Robustness, Fault Tolerance and Reliability:

A robust software should not lose its availabilty even in most failure states. Even if some

components are broken down, it may continue running. Besides, even if whole

application crashes, it may recover itself using backup hardware and data with fault

tolerance approaches. There should always be B and even C, D ..plans. Reliability also

4

stands for the integrity and consistency of the software even under high load conditions.

So it is relevant with availability and scalability. An unreliable system is also unscalable.

Usability and Accessability

User interfaces are the only visible parts of software according to the viewpoint of user.

So, simplicity, taking less time to complete a job, fast learnability etc. are very important

in this case. The most well known principle for this property is KISS (Keep It Simple

Stupid). Simple is always the best. A usable software should also support different

accessibility types of control for people with disabilities.

Platform Compatibility and Portability

A quality software should run on as much various platforms as it can. So, more people

can make use of it. In different contexts we may mention different platforms, this may

be OS platforms, browser types etc. And portability is about adapting software that can

run on different platforms, for being more platform compatible. In this sense, portability

is also related with flexibility
Testability and Managability

Quality software requires quality testing. Source code should be tested with the most

coverage and with the most efficient testing methods. This can be performed by

using encapsulation, interfaces, patterns, low coupling etc. techniques correctly. Besides

testability, a qualified software should be manageable after deployment. It may be

monitored for e.g. performance or data usage status, or may enable developer to

configure system easily. Creating a successful logging system is another very important

issue about managability.

Security

Security is a very important issue on software development, especially for web or

mobile based ones which may have millions of users with the ability of remote accessing

to system. You should construct a security policy and apply it correctly by leaving no

entry points. This may include authorization and authentication techniques, network

attack protections, data encryption and so on. all possible types of security leaks should

be considered, otherwise one day only one attack may crash your whole applicaion and

whole company.

Functionality and Correctness

Functionality (or correctness) is the conformity of the software with actual requirements

and specifications. In fact this is the precendition attribute of an application, and maybe

not a quality factor but we wanted to point that as the last quality factor, for taking

attention: Quality factors are not meaningful when we are talking about unfunctional

software. First, perform desired functionality and produce correct software, then apply

quality factors on it. If you can perform both paralelly, it is the best.

3. Explain Siral Model? [2015][2017]
Ans:-Spiral Model
The spiral model also known as the spiral life cycle model is a systemsdevelopment life

cycle model used in information technology. This model of

development combines the features of the prototyping model, the waterfall model and

other models. The diagrammatic representation of this model appears like a spiral with

many loops.

5

Exact number of phases through which the product is developed in this model is not

fixed. The number of phases varies from one project to another. Each phase in this

model is split into four sectors or quadrants:

Planning: Identifies the objectives of the phase and the alternative solutions possible

for the phase and constraints.

Risk analysis: Analyze alternatives and attempts to identify and resolve the risks

involved.
Development: Product development and testing product.

Assessment: Customer evaluation.

During the first phase planning is performed, risks are analyzed, prototypes are built and

customers evaluate the prototype. During the second phase a second prototype is

evolved by a fourfold procedure: evaluating the first prototype in terms of its strengths,

weaknesses and risks, defining the requirements of the second prototype, constructing

and testing the second prototype. The existing prototype is evaluated in the same manner

as was the previous prototype and if necessary another prototype is developed. After

several iterations along the spiral, all risks are resolved and the software is ready for

development. At this point, a waterfall model of software development is adopted.

The radius of the spiral at any point represents the cost incurred in the project

till then and the angular dimension represents the progress, made in the current phase.

In the spiral model of development, the project team must decide how exactly to

structure the project into phases. The most distinguishing feature of this model is its

ability to handle risks. The spiral model uses prototyping as a risk reduction mechanism

and also retains the systematic step-wise approach of the waterfall model.

4. What is prototyping? Explain. [2015][2016]
Ans.)The prototyping paradigm can be either close-ended or open-ended. The

close-ended approach is called throwaway prototyping and an open-ended approach

called evolutionary prototyping.
Prototyping Approach

6

Throwaway prototyping: Prototype only used as a demonstration of product

requirements.

Evolutionary prototyping uses the prototype as the first part of an analysis

activity that will be continued into design and construction.

The customer must interact with the prototype, it is essential that:

a) Customer resources must be committed to evaluation and refinement

of the prototype.

b) Customer must be capable of making requirements decisions in a

timely manner.

Prototyping Tools and Methods

Three generic classes of methods and tools are:

• Fourth generation techniques: Fourth generation techniques (4GT)

tools allow software engineer to generate executable code quickly.

• Reusable software components: Assembling prototype from a set of existing software

components.

• Formal specification and prototyping environments can interactively create executable

programs from software specification models.

5. Explain the classical life cycle model? [2016][2017]
Ans:-This model is called as linear sequential model. This model suggests a

systematic approach to software development.

The project development is divided into sequence of well-defined phases. It

can be applied for long-term project and well understood product

requirement.

The classical waterfall model breaks down the life cycle into an intuitive set

of phases. Different phases of this model are:

Feasibility study

Requirements analysis and specification

Design

Coding and unit testing

Copy Right DTE&T, Odisha Page 12
Integration and system testing

Maintenance

The phases starting from the feasibility study to the integration and system

testing phases are known as the development phases. All these activities are

performed in a set of sequence without skip or repeat. None of the activities

can be revised once closed and the results are passed to the next step for use.

Feasibility Study

The main of the feasibility study is to determine whether it would be

financially, technically and operationally feasible to develop the product. The

feasibility study activity involves the analysis of the problem and collection

of all relevant information relating to the product such as the different data

items which would be input to the system, the processing required to be

Fig. 1.1 Classical Waterfall Model

7

Copy Right DTE&T, Odisha Page 13
carried out on these data, the output data required to be produced by the

system.

Technical Feasibility

Can the work for the project be done with current equipment, existing

software technology and available personnel?

Economic Feasibility

Are there sufficient benefits in creating the system to make the costs

acceptable?

Operational Feasibility

Will the system be used if it is developed and implemented?

These phases capture the important requirements of the customer, also

formulate all the different ways in which the problem can be solved are

identified.

Requirement Analysis and Specifications

The goal of this phase is to understand the exact requirements of the

customer regarding the product to be developed and to document them

properly.

This phase consists of two distinct activities:

Requirements gathering and analysis.

Requirements specification.

Requirements Gathering and Analysis

This activity consists of first gathering the requirements and then analyzing

Copy Right DTE&T, Odisha Page 14
the gathered requirements.

The goal of the requirements gathering activity is to collect all relevant

information regarding the product to be developed from the customer with a

view to clearly understand the customer requirements.

Once the requirements have been gathered, the analysis activity is taken up.

Requirements Specification

The customer requirements identified during the requirement gathering and

analysis activity are organized into a software requirement specification

(SRS) document. The requirements describe the “what” of a system, not the

8

“how”. This document written in a natural language contains a description of

what the system will do without describing how it will be done. The most

important contents of this document are the functional requirements, the nonfunctional

requirements and the goal of implementation. Each function can

be characterized by the input data, the processing required on the input data

and the output data to be produced. The non-functional requirements identify

the performance requirements, the required standards to be followed etc. The

SRS document may act as a contract between the development team and

customer.

Design

The goal of this phase is to transform the requirements specified in the SRS

document into a structure that is suitable for implementation in some

programming language. Two distinctly different design approaches are being

used at present. These are:

Traditional design approach

Object-oriented design approach

Traditional Design Approach

The traditional design technique is based on the data flow oriented design

approach.

The design phase consists of two activities: first a structured analysis of the

requirements specification is carried out, second structured design activity.

Structured analysis involves preparing a detailed analysis of the different

functions to be supported by the system and identification of the data flow

among the functions. Structured design consists of two main activities:

architectural design (also called high level design) and detailed design (also

called low level design).

High level design involves decomposing the system into modules,

representing the interfaces and the invocation relationships among the

modules. Detailed design deals with data structures and algorithm of the

modules.

Object-Oriented Design Approach

In this technique various objects that occur in the problem domain and the

solution domain are identified and the different relationships that exist among

these objects are identified.

Coding and Unit Testing

The purpose of the coding and unit testing phase of software development is

to translate the software design into source code. During testing the major

activities are centred on the examination and modification of the code.

Initially small units are tested in isolation from rest of the software product.

Unit testing also involves a precise definition of the test cases, testing criteria

and management of test cases.

Copy Right DTE&T, Odisha Page 16
Integration and System Testing

During the integration and system testing phase the different modules are

integrated in a planned manner. Integration of various modules are normally

9

carried out incrementally over a number of steps. During each integration

step previously planned modules are added to the partially integration system

and the resultant system is tested. Finally, after all the modules have

been successfully integrated and tested system testing is carried out.

The goal of system testing is to ensure that the developed system confirms to

its requirements laid out in the SRS document. System testing usually

consists of three different kinds of testing activities:

α –testing: α testing is the system testing performed by the

development team.

β –testing: This is the system testing performed by a friendly set of

customers.

Acceptance testing: This is the system testing performed by the

customer himself after the product delivery to determine whether to

accept the delivered product or to reject it.

System testing is normally carried out in a planned manner according to a

system test plan document. The results of information and system testing are

documented in the form of a test report.

Maintenance

Software maintenance is a very broad activity that includes error correction,

enhancement of capabilities and optimization. The purpose of this phase is to

preserve the value of the software over time. Maintenance involvesperforming the

following activities.

6. What is prototype? Under what circumstances is it beneficial to

contruct a prototype? Describe the prototyping model of software

development? [2015][2016][2017]

Ans.)A prototype is an early sample, model, or release of a product built to test a

concept or process or to act as a thing to be replicated or learned from.[1] It is a term

used in a variety of contexts, including semantics, design, electronics, and software

programming. A prototype is generally used to evaluate a new design to enhance

precision by system analysts and users.

 Prototyping helps to eliminate ambiguities and improve accuracy in
interpretation of system requirements and functionality

 Prototyping helps to ensure that the solution does what it is supposed to do - not
what the developer thinks it ought to do, or how

 Prototyping allows the developer to quickly demonstrate (or walkthrough) a
system or part thereof, albeit limited in that its purpose may be to simply
provide an insight or overview of a system (eg look and feel of the user
interface), or to focus on a component part in detail but possibly in isolation
(egstand alone rather than integrated)

https://en.wikipedia.org/wiki/Prototype#cite_note-:0-1
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Design
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Software_prototyping
https://en.wikipedia.org/wiki/Software_prototyping

10

 Prototyping helps to identify and address problems early on (eg missing,
confusing or misunderstood features)

 Prototyping allows the developer to explore ideas and exchange feedback with
the client and end-user. This is an important step in preparing to develop a
solution that is fit for purpose, does what it needs to do, and does it well

 Prototyping helps to firm up how the final solution will look and function.
Acceptance allows the developer to progress to the next stage and to be
focussed on what needs to be done

 Prototyping gives the client and end-user a greater sense of involvement,
ownership and a better appreciation of the final solution

 Prototyping helps the developer to estimate development costs, timescale, skills
and potential resource requirements

 Prototyping serves as a useful reference point - in that it can be referred back to
as necessary (eg as a reminder or even in the event of a dispute further into he
development lifecycle)

7. When does the project planning activity start and end in a software life cycle? List

the major activities, Software projects managers performs during project

planning. [2016][2017]

Ans:-The Project Life Cycle is a series of activities which are essential for
accomplishing project objectives or targets. Projects may have different
dimensions and difficulty level, but, whatever the size: large or small, may be all
projects could be mapped to the given lifecycle structure. This life cycle for the
project includes four phases-

 Initiation Phase
 Planning Phase
 Execution Phase
 Monitoring, Controlling & Closing

Phase

https://www.guru99.com/initiation-phase-project-management-life-cycle.html#1
https://www.guru99.com/initiation-phase-project-management-life-cycle.html#2
https://www.guru99.com/initiation-phase-project-management-life-cycle.html#3
https://www.guru99.com/initiation-phase-project-management-life-cycle.html#4
https://www.guru99.com/initiation-phase-project-management-life-cycle.html#4

11

We will first look into Initiation Phase

Project Initiation Phase

Initiation phase defines those processes that are required to start a new project.
The purpose of the project initiation phase is to determine what the project
should accomplish.

This phase mainly composed of two main activities

 Develop a Project Charter and
 Identify Stakeholders

All the information related to the project are entered in the Project Charter and
Stakeholder Register. When the project charter is approved, the project
becomes officially authorized.

Project Charter

The Project Charter defines the project's main elements

 Project goals
 Project constraints and Problem statements
 Assign project manager
 Stakeholder list
 High-level schedule and budget
 Milestones
 Approvals

https://cdn.guru99.com/images/projmgmt.png

12

This document allows a project manager to utilize organizational resources for
the sake of the project. To create a project charter, the inputs required will be
enterprise environment factor, business case, agreements, a project statement
of work and organizational process assets.

A stakeholder can Identifying Stakeholders

influence the success and failure of the project. To note down the information
about the stakeholder, a Stakeholder Register is used.

The stakeholder register will have information like

 Type of stakeholder
 Expectation of stakeholder
 Role in Project (Business Analyst, Tech architect, Client PM)
 Designation (Director, Business Lead, etc.)
 Type Communication (Weekly/Monthly)
 Influence on the project (Partial/Supportive/Influensive)

The other activities involved in initiating process group are:

 Assigning the project manager
 Determining the stakeholder needs, expectations and high-level

requirements
 Define the project success criteria
 Identify particular budget for particular stage
 Make sure that the project is aligned with the organizations strategic goal

The stakeholder register and project charter are used as inputs to the other
process groups such as planning process group.

Project Planning Phase

Project Planning phase covers about 50% of the whole process. Planning phase
determines the scope of the project as well as the objective of the project. It
begins with the outputs of initiation phase (charter, preliminary scope statement,
and project manager). The output of the planning phase serves as the input for
the execution phase.

The important aspects of planning process are

 Planning phase should not be executed before your initial planning is
finished

 Until the execution process does not start, you should not stop revising
plans

https://www.guru99.com/stakeholder-needs-analysis.html

13

Create WBS

For any successful project WBS (Work Breakdown Structure) is important.
Following steps are to create WBS.

 Conduct a brainstorm to list all the tasks
 Involve your whole team for brainstorming
 Write down the structure tree of the task also known as WBS (work

breakdown structure)
 Further breakdown your top WBS into a hierarchical set of activities, for

instance, categories, sub-categories, etc. For example hardware,
software, trainee, management teams, etc.

 Define how to record the items into your WBS
 Ask other people - it can be an expert, experienced personnel, etc.
 Granularity- how detailed your task should you have? Estimating cost and

time for higher granularity is hard while for lower granularity it will be
bogged down with too detailed information

 Granularity should be of right level not too high or not too low

Planning Schedule Management

Plan Scheduling is the process of establishing the procedure, policies and
documentation for planning, managing, executing and controlling the project
schedule. The inputs in these activities include

 Project management plan
 Project Charter
 Enterprise environmental factors

Organizational process assets

[6Marks question Answer]

1. Distinguish between a program and a software? [2018][2016]

PROGRAM SOFTWARE

->Programs are developed

byindividuals for their ersonal use.

->s/w products are develoed by multiple

users.

->They are in small size. ->s/w products have large in size.

->It have limited functionality. ->It has good functionality proper users

manual, systematically designed

,carefully implemented and thoroughly

tested.

->The author of a program himself uses

and maintains his program therefore

lack good user interface and

->It has a large no of users and therefore

have good user interface and good

documentation,support.

14

predocumentation.

->The programs developed by a student

as pert of his class assignment are

programs and not s/w product.

->A s/w product consists of only of the

program code but also of

alltheassociated documents such as the

requirements specification document,the

design document ,the test document,the

user manuals and so on.

->Programmers who write program. ->S/W engineers who develop s/w

products .Since a groupof s/w engineers

usually works together in a team to

developer a s/w product.

2. What is a life cycle model? Explain Evolutionary model of s/w development?

[2015][2016]

Ans:-A s/w life cycle is the series of identifiable stages that a s/w product

undergoes during its lifetime.

 The first stage in the life cycle of any software product is usually the feasibility

study stage.

 Commonly the subsequent stages

are:requirements,analysis,specification,design,coding,testing and maintenance.

 Each of these stages are called a life cycle phase.

Evolutionary model of software Development

 This life cycle model is also referred to as the “Successive version” modeland

sometimes as the “incremental model”.

 In this life cycle model ,the s/w is first broken down into several

modules.(function units) which can be incrementally constructed and delivered.

The evolutionary model is used when the customer prefers to receive the

products in increments rather than waiting for the full product to be developed and

delivered. The evolutionary model is very popular for object oriented software

15

development project. The main disadvantage of the successive versions model is that for

most practical problems it is difficult to divide the problem into several functional

units which can be incrementally implemented and delivered. Theevolutionary model is

normally useful for only very large products.

16

[2 marks questions with answer]

1. Define Software? [2016][2017]

Ans:-Software is a program or set of instructions which instructing the computer to

do a specific task.

 Software are of two types

1. System software

2. Application software

2.What does feasibility mean in software Engineering?

Ans. Software Requirements Analysis (Feasibility Study) In this phase, the development

team visits the user and studies their system. They investigate the need for

development in the given system. The requirements-gathering process is intensified

and focuses specifically on software.

3.What are the main features of software engineering?

Ans:-Simplicity: Software code should be written in a simple and concise
manner. Simplicity should be maintained in the organization, implementation,
and design of the software code.

Modularity: Breaking the software into several modules not only makes it easy
to understand but also easy to debug. With the modularity feature, the same
code segment can be reused in one or more software programs.

Design: Software code is properly designed if it is presented in a proper
manner. The design of the software should be decided before beginning to write
the software code. Writing the software code in a specific, consistent style helps
other software developers in reviewing it.

Efficiency: A program is said to be efficient if it makes optimal use of the
available resources.

4. Differentiate between program and software product?

Software Program

The software is a broad term which is

designed to perform some specific set of

operations.

A program is set of

instructions which perform only

a specific type of task.

http://careersplay.com/what-is-computer-software-and-its-types/

17

A software consists of bundles of

programs and data files. Programs in a

specific software use these data files to

perform a dedicated type of tasks.

A program consists of a set of

instructions which are coded in

a programming language like C,

C++, PHP, Java etc.

A software can be classified into two

categories: application software and system

software.

An application software comes in wide range of

varieties like a text editor, media player, web

browser, video player, video editor, image editor.

Different types of application software provide a

different type of services.

A program cannot be

classified into various

categories.

Source code in a program is
written for small jobs.

Chapter –II

[7 MARKS QUESTION AND ANSWER]

1. Explain the FP and LOC metrics? [2016][2017][2018]

Ans:-The size of a project is obviously not the number of bytes that the source code

occupies. The project size is a measure of the problem complexity in terms of the effort

and time required to develop the product.

Two metrics are widely used to estimate size:

Lines of Code (LOC)

Function Point (FP)

Lines Of Code (LOC)

LOC can be defined as the number of delivered lines of code in software

excluding the comments and blank lines. LOC depends on the programming

language chosen for the project. The exact number of the lines of code can

only be determined after the project is complete since less information about

the project is available at the early stage of development.

In order to estimate the LOC count at the beginning of a project, project

managers usually divide the problem into modules and each modules into sub

modules and a so on until the sizes of the different leaf level modules can be

approximately predicted.

Disadvantages:

LOC is language dependent. A line of assembler is not the same as a

line of COBOL.

LOC measure correlates poorly with the quality and efficiency of the

code. A larger code size does not necessary imply better quality or

18

higher efficiency.

LOC metrics penalizes use of higher level programming languages,

code reuse etc.

It is very difficult to accurately estimate LOC in the final product from

the problem specification. The LOC count can be accurately computed

only after the code has been fully developed.

Function Point Metric

Function Points measure software size by quantifying the functionality

provided to the user based solely on logical design and functional

specifications

Function point analysis is a method of quantifying the size and

complexity of a software system in terms of the functions that the

system delivers to the user

It is independent of the computer language, development methodology,

technology or capability of the project team used to develop the

application.

Function point analysis is designed to measure business applications

(not scientific applications) .

Function points are independent of the language, tools, or

methodologies used for implementation

Function points can be estimated early in analysis and design

Since function points are based on the system user’s external view of the system, non-

technical users of the software system have a better understanding of what function

points are measuring.

Objectives of Function Point Counting

Measure functionality that the user requests and receives

Measure software development and maintenance independently of technology used

for implementation.

2. How the size of a software project is estimated by function point

method ,discuss?[2018]
Ans:-Function Points measure software size by quantifying the functionality

provided to the user based solely on logical design and functional specifications

Function point analysis is a method of quantifying the size and complexity of a

software system in terms of the functions that the system delivers to the user

It is independent of the computer language, development methodology, technology or

capability of the project team used to develop the application.

Steps of Function Point Counting

Determine the type of function point count

Identify the counting scope and application boundary

Determine the Unadjusted Function Point Count

Count Data Functions

Count Transactional Functions

19

Determine the Value Adjustment Factor

Calculate the Adjusted Function Point Count

Function point metric estimates the size of a software product directly from

the problem specification.

The different parameters are:

Number Of Inputs:

Each data item input by the user is counted.

Number Of Outputs:

The outputs refers to reports printed, screen outputs, error messages

produced etc.

Number Of Inquiries:

It is the number of distinct interactive queries which can be made by the

users.

Number Of Files:

Each logical file is counted. A logical file means groups of logically

related data. Thus logical files can be data structures or physical files.

Number Of Interfaces:

Here the interfaces which are used to exchange information with other

systems. Examples of interfaces are data files on tapes, disks,

communication links with other systems etc.

Function Point (FP) is estimated using the formula: FP = UFP (Unadjusted Function

Point) * TCF (Technical Complexity Factor)

UFP = (Number of inputs) * 4 + (Number of outputs) * 5 + (Number of inquiries) * 4 +

(Number of files) * 10 + Number of interfaces) * 10

TCF = DI (Degree of Influence) * 0.01

The unadjusted function point count (UFP) reflects the specific countable

functionality provided to the user by the project or application.

Example- Once the unadjusted function point (UFP) is computed, the

technical complexity factor (TCF) is computed next. The TCF refines the

UFP measure by considering fourteen other factors such as high

transaction rates, throughput and response time requirements etc. Each of

these 14 factors is assigned a value from 0 (not present or no influence) to

6 (strong influence). The resulting numbers are summed, yielding the total

degree of influence (DI). Now, the TCF is computed as (0.65+0.01*DI).

As DI can vary from 0 to 70, the TCF can vary from 0.65 to 1.35.

Finally FP = UFP *TCF

3. What is software reliability? Explain the different types of reliability

metrics used in software engineering? [2016][2017]

Ans.)Software Reliability is the probability of failure-free software operation for a

specified period of time in a specified environment. Software Reliability is also an

important factor affecting system reliability.

The size of a project is obviously not the number of bytes that the source

20

code occupies. The project size is a measure of the problem complexity

in terms of the effort and time required to develop the product.

Two metrics are widely used to estimate size:

Lines of Code (LOC)

Function Point (FP)

Lines Of Code (LOC)

LOC can be defined as the number of delivered lines of code in software

excluding the comments and blank lines. LOC depends on the programming

language chosen for the project. The exact number of the lines of code can

only be determined after the project is complete since less information about

the project is available at the early stage of development.

In order to estimate the LOC count at the beginning of a project, project

managers usually divide the problem into modules and each modules into sub

modules and a so on until the sizes of the different leaf level modules can be

approximately predicted.

Function Point Metric

Function Points measure software size by quantifying the functionality

provided to the user based solely on logical design and functional

specifications

Function point analysis is a method of quantifying the size and

complexity of a software system in terms of the functions that the

system delivers to the user

It is independent of the computer language, development methodology,

technology or capability of the project team used to develop the

application.

Function point analysis is designed to measure business applications

(not scientific applications) .

Function points are independent of the language, tools, or

methodologies used for implementation

Function points can be estimated early in analysis and design

Since function points are based on the system user’s external view of the system, non-

technical users of the software system have a better

understanding of what function points are measuring.

4. What is risk? Explain the risk management procedures used during

software development. [2015][2016]

Ans:-Risk is an expectation of loss, a potential problem that may or may not

occur in the future. It is generally caused due to lack of information, control or

time.A possibility of suffering from loss in software development process is

called a software risk.

Risk is an expectation of loss, a potential problem that may or may not occur in
the future. It is generally caused due to lack of information, control or time.A
possibility of suffering from loss in software development process is called a

21

software risk. Loss can be anything, increase in production cost, development of
poor quality software, not being able to complete the project on time. Software
risk exists because the future is uncertain and there are many known and
unknown things that cannot be incorporated in the project plan. A software risk
can be of two types (a) internal risks that are within the control of the project
manager and (2) external risks that are beyond the control of project manager.
Risk management is carried out to:

1. Identify the risk
2. Reduce the impact of risk
3. Reduce the probability or likelihood of risk
4. Risk monitoring

A project manager has to deal with risks arising from three possible cases:

1. Known knowns are software risks that are actually facts known to the team
as well as to the entire project. For example not having enough number of
developers can delay the project delivery. Such risks are described and
included in the Project Management Plan.

2. Known unknowns are risks that the project team is aware of but it is
unknown that such risk exists in the project or not. For example if the
communication with the client is not of good level then it is not possible to
capture the requirement properly. This is a fact known to the project team
however whether the client has communicated all the information properly
or not is unknown to the project.

3. Unknown Unknowns are those kind of risks about which the organization
has no idea. Such risks are generally related to technology such as
working with technologies or tools that you have no idea about because
your client wants you to work that way suddenly exposes you to absolutely
unknown unknown risks.

Software risk management is all about risk quantification of risk. This includes:

1. Giving a precise description of risk event that can occur in the project
2. Defining risk probability that would explain what are the chances for that

risk to occur
3. Defining How much loss a particular risk can cause
4. Defining the liability potential of risk

Risk Management comprises of following processes:

1. Software Risk Identification
2. Software Risk Analysis
3. Software Risk Planning
4. Software Risk Monitoring

22

These Processes are defined below.

Software Risk Identification

In order to identify the risks that your project may be subjected to, it is important
to first study the problems faced by previous projects. Study the project plan
properly and check for all the possible areas that are vulnerable to some or the
other type of risks. The best ways of analyzing a project plan is by converting it
to a flowchart and examine all essentialareas. It is important to conduct few
brainstorming sessions to identify the known unknowns that can affect the
project. Any decision taken related to technical, operational, political, legal,
social, internal or external factors should be evaluated properly.

Software Risk Identification

In this phase of Risk management you have to define processes that are
important for risk identification. All the details of the risk such as unique Id, date
on which it was identified, description and so on should be clearly mentioned.

Software Risk Analysis

Software Risk analysisis a very important aspect of risk management. In this
phase the risk is identified and then categorized. After the categorization of risk,
the level, likelihood (percentage) and impact of the risk is analyzed. Likelihood is
defined in percentage after examining what are the chances of risk to occur due
to various technical conditions. These technical conditions can be:

1. Complexity of the technology
2. Technical knowledge possessed by the testing team
3. Conflicts within the team
4. Teams being distributed over a large geographical area
5. Usage of poor quality testing tools

With impact we mean the consequence of a risk in case it happens. It is
important to know about the impact because it is necessary to know how a
business can get affected:

23

1. What will be the loss to the customer
2. How would the business suffer
3. Loss of reputation or harm to society
4. Monetary losses
5. Legal actions against the company
6. Cancellation of business license

Level of risk is identified with the help of:

Qualitative Risk Analysis: Here you define risk as:

 High
 Low
 Medium

Quantitative Risk Analysis: can be used for software risk analysis but is
considered inappropriate because risk level is defined in % which does not
give a very clear picture.

5 .What is software quality? Explain the evolution of software quality

managements system? [2016][2017]

Ans.)software quality refers to two related but distinct notions that exist wherever
quality is defined in a business context:
Software functional quality reflects how well it complies with or conforms to a given
design, based on functional requirements or specifications. That attribute can also be
described as the fitness for purpose of a piece of software or how it compares to
competitors in the marketplace as a worthwhile product.[1] It is the degree to which
the correct software was produced.
Software structural quality refers to how it meets non-functional requirements that
support the delivery of the functional requirements, such as robustness or
maintainability. It has a lot more to do with the degree to which the software works as
needed.

Chapter 3. Software processes

Table of ContentsSoftware process models.

 The waterfall model

 Evolutionary development

 Component-based software engineering

 Process iteration

 Incremental delivery

 Spiral development

24

 Process activities

 Software specification

 Software design and implementation

 Software validation

 Software evolution

 The Rational Unified Process

 Exercises

A software development process, also known as a software development lifecycle, is a
structure imposed on the development of a software product. A software process is
represented as a set of work phases that is applied to design and build a software
product. There is no ideal software process, and many organisations have developed
their own approach to software development. Software development processes should
make a maximum use of the capabilities of the people in an organisation and the
specific characteristics of the systems that are being developed [1][14][15].

There are some fundamental activities that are common to all software processes:

Software specification: In this activity the functionality of the software and constraints
on its operation must be defined.

Software design and implementation: The software that meets the specification is
produced.

Software validation: The software must be validated to ensure that it has all the
functionalities what the customer needs.

Software evolution: he software must evolve to meet changing customer needs.

Software process models:

A software process model is an abstract representation of a software process. In this
section a number of general process models are introduced and they are presented
from an architectural viewpoint. These models can be used to explain different
approaches to software development. They can be considered as process frameworks
that may be extended and adapted to create more specific software engineering
processes. In this chapter the following process models will be introduced:

The waterfall model. In this model of software process the fundamental process
activities of specification, development, validation and evolution are represented as
sequential process phases such as requirements specification, software design,
implementation, testing and so on.

25

Evolutionary development. This approach interleaves the activities of specification,
development and validation. An initial system is rapidly developed from abstract
specifications. Then the initial system is refined by customer inputs to produce a
system that satisfies the customer’s needs.

Component-based software engineering. The process models that use this approach
are based on the existence of a significant number of reusable components. The system
development process focuses on integrating these components into a system rather
than developing them.

These three generic process models are widely used in current software engineering
practice. They are not mutually exclusive and are often used together, especially for
large systems development. Sub-systems within a larger system may be developed
using different approaches. Therefore, although it is convenient to discuss these
models separately, in practice, they are often combined.

The waterfall model:
The waterfall model was the first software process model to be introduced (Figure
3.1.). It is also referred to as a linear-sequential life cycle model. The principal stages of
the model represent the fundamental development activities:
Requirements analysis and definition. Software requirements specification establishes
the basis for agreement between customers and contractors or suppliers on what the
software product is to do. Software requirements specification permits a rigorous
assessment of requirements before design can begin. It should also provide basis for
estimating product costs, risks, and schedules.

System and software design. Design activity results in the overall software architecture.
Software design involves identifying and describing the fundamental software system
components and their relationships. The systems design process partitions the
requirements to either hardware or software components.

Implementation and unit testing. During this phase, the software design is realised as a
set of software components. Components are tested ensuring each component meets
its specification.

Integration and system testing. The program units or components are integrated and
tested as a complete system to ensure that the software requirements have been met.
After successful testing, the software system is delivered to the customer.

Operation and maintenance. The system is delivered and deployed and put into
practical use. Maintenance involves correcting errors which were not discovered in

26

earlier stages of the life cycle, improving the implementation of system units and
providing new functionalities as new requirements emerge.
6 .What are PERT charts and GANTT charts and when to use them?

Ans.)PERT charts are generally used before a project begins to plan and determine the
duration of each task. Gantt charts are used while a project is happening to break
projects into smaller tasks and highlight scheduling constraints.
Like PERT charts, Gantt charts break projects into smaller tasks and highlight scheduling
constraints. However, project managers use Gantt charts while a project is
happening—they schedule tasks by date and show how much work has been
completed. Every activity is represented with a bar that stretches from the start date to
the end date of that activity.

Gantt chart example

PERT charts are generally used before a project begins to plan and determine the
duration of each task—so they don’t have to show the actual dates of your project.
They also do a better job of showing whether certain tasks need to be completed in
order or whether they can be completed simultaneously. Use a PERT chart if you need
to:

Show the interdependency of certain tasks.
Anticipate the amount of time it’ll take to complete a project.
Determine the critical path to meet your deadlines.
Plan for large or more complex projects.
If you decide that a Gantt chart will best fit your needs, see how you can create a
simple Gantt chart right in Lucidchart. If you decide that you need a PERT chart,
continue onward! This article will show you how to create one.

7. Explain different types of project estimation techniques? [2016][2017][2018]

Ans:- There are basically two approaches for estimating project parameters [4].

They are:

1. Top-down estimation approach

2. Bottom-up estimation approach

Top-down estimation approach:

Top-down estimation approach is usually used at the initial stages of the project.

This estimation is usually carried out by the top managers who have little

knowledge of the processes involved in the completion of the project. The input

to this estimation is either information or the experience of the manager

27

carrying out the estimation. These top-down estimation methods are often used

to evaluate the project proposal. In most cases, the best results can be achieved

in estimation only when one used both top-down and bottom-up estimation

methods. However, it is practically not possible to carry out bottom-up methods

until the Work Breakdown Structure (WBS) are clearly defined. In such cases,

top-down estimates are used until the WBS becomes available.

There are many methods in top-down approach listed below [4]:

Consensus methods: This estimation method uses experience of a group of

people to estimate the project parameters. This method involves project

meetings, a place where these people can discuss, argue and finally come to a

conclusion from their best guess estimate. The Delphi method comes under this

category.

Ratio methods: These estimation methods use ratios to estimate project times

and costs. For example, in a construction work, the total cost of the project can

be estimated by knowing the number of square feet. Likewise, a software project

is estimated by its complexity and its features.

Approximation methods: This estimation method is very useful when the project

to be estimated is closely related to any of the previous projects in terms of its

features and costs. By using the historical data of the estimates, good estimates

can be approximated with very little effort.

Function point methods: Many software projects are usually estimated using

weighted macro variables called "function points". Function points can be

number of inputs, number of outputs, number of inquiries, number of data files,

and number of interfaces. These function points are weighted again with a

complexity level and summed up to get the total cost or duration estimates of

the project.

Bottom-up estimation approach:

Top-down estimation approach can usually be put in practice once the project is

defined or once there is some progress in the project. This means, this

estimation is more into work package level, which are responsible for low-cost

estimates and efficient methods. It is often recommended that this estimation is

usually carried out by people most knowledgeable about the estimate needed.

The cost, time, resource estimates from the work packages can be checked with

the associated accounts to major deliverables. Also, these estimates in later

28

stages can be consolidated into phased networks, resource schedules, and

budgets that used for control. Additionally, customer will get an opportunity to

compare the low-cost, efficient method with any imposed restrictions, using

bottom-up approach [4].

There are many methods in top-down approach listed below [4]:

Template methods: If the project to be estimated is similar to any of the past

projects, then estimates of the past projects can be used as starting point

estimates for the new project. This is similar to approximation estimation in top-

down approach.

Parametric procedures: These parametric procedures are same like ratio

methods in top-down approach. However, here the parametric procedures are

applied on specific tasks.

Detailed estimates for WBS work packages: This is usually most reliable method

of all estimation methods. The reason for this is that here the estimates are

performed by people responsible for the work packages in Work Breakdown

Structure. These people have prior knowledge or experience upon the tasks they

perform specified in WBS, because of which the estimates are usually most

reliable.

In addition to the top-down and bottom-up approaches, there is another kind of

estimating which is a hybrid of the above two approaches. This is called as Phase

Estimating. When there is unusual amount of uncertainty is surrounded by the

project, people go for phase estimating. In this approach, two-estimate system is

used over the life-cycle of the project. The whole project is initially divided into

phases. Then a detailed estimate is developed for the immediate phase, and a

macro-estimate is mode for the remaining phases of the project.

[5 marks question]

1. What do you mean by good software design? What are its characteristics?

[2015][2016][2018]

 While developing any kind of software product, the first question in any

developer's mind is, “What are the qualities that a good software should have ?"

Well before going into technical characteristics, I would like to state the obvious

expectations one has from any software. First and foremost, a software product

29

must meet all the requirements of the customer or end-user. Also, the cost of

developing and maintaining the software should be low. The development of

software should be completed in the specified time-frame.

Well these were the obvious things which are expected from any project (and

software development is a project in itself). Now lets take a look at Software

Quality factors. These set of factors can be easily explained by Software Quality

Triangle. The three characteristics of good application software are :-

1) Operational Characteristics

 2) Transition Characteristics

 3) Revision Characteristics

 Software Quality Triangle

Software Quality Triangle with characteristics

 16 Characteristics of a Good Software

 What Operational Characteristics should a software have ?

 These are functionality based factors and related to 'exterior quality' of software.

Various Operational Characteristics of software are :

a) Correctness: The software which we are making should meet all the

specifications stated by the customer.

https://4.bp.blogspot.com/-7Jy4ZbYld_Y/Tq1BWySL0bI/AAAAAAAAAHc/t5f6WEQSZT8/s1600/Software_Quality_Triangle.jpg

30

b) Usability/Learnability: The amount of efforts or time required to learn how to

use the software should be less. This makes the software user-friendly even for IT-

illiterate people.

c) Integrity : Just like medicines have side-effects, in the same way a software may

have a side-effect i.e. it may affect the working of another application. But a

quality software should not have side effects.

d) Reliability : The software product should not have any defects. Not only this, it

shouldn't fail while execution.

e) Efficiency : This characteristic relates to the way software uses the available

resources. The software should make effective use of the storage space and

execute command as per desired timing requirements.

f) Security : With the increase in security threats nowadays, this factor is gaining

importance. The software shouldn't have ill effects on data / hardware. Proper

measures should be taken to keep datasecure from external threats.

g) Safety : The software should not be hazardous to the environment/life.

(c) What are PERT charts and GANTT charts and when to use them?

Ans.)PERT charts are generally used before a project begins to plan and determine the

duration of each task. Gantt charts are used while a project is happening to break

projects into smaller tasks and highlight scheduling constraints.

 Like PERT charts, Gantt charts break projects into smaller tasks and highlight

scheduling constraints. However, project managers use Gantt charts while a

project is happening—they schedule tasks by date and show how much work has

been completed. Every activity is represented with a bar that stretches from the

start date to the end date of that activity.

 Gantt chart example

 PERT charts are generally used before a project begins to plan and determine the

duration of each task—so they don’t have to show the actual dates of your project.

They also do a better job of showing whether certain tasks need to be completed

in order or whether they can be completed simultaneously. Use a PERT chart if you

need to:

 Show the interdependency of certain tasks.

 Anticipate the amount of time it’ll take to complete a project.

31

 Determine the critical path to meet your deadlines.

 Plan for large or more complex projects.

 If you decide that a Gantt chart will best fit your needs, see how you can create a

simple Gantt chart right in Lucidchart. If you decide that you need a PERT chart,

continue onward! This article will show you how to create one.

2 .Explain different Metrics to measure software quality? [2015][2016][2017]

Ans:-The size of a project is obviously not the number of bytes that the source

code occupies. The project size is a measure of the problem complexity

in terms of the effort and time required to develop the product.

Two metrics are widely used to estimate size:

Lines of Code (LOC)

Function Point (FP)

Lines Of Code (LOC)

LOC can be defined as the number of delivered lines of code in software

excluding the comments and blank lines. LOC depends on the programming

language chosen for the project. The exact number of the lines of code can

only be determined after the project is complete since less information about

the project is available at the early stage of development.

In order to estimate the LOC count at the beginning of a project, project

managers usually divide the problem into modules and each modules into sub

modules and a so on until the sizes of the different leaf level modules can be

approximately predicted.

Disadvantages:

LOC is language dependent. A line of assembler is not the same as a

line of COBOL.

LOC measure correlates poorly with the quality and efficiency of the

code. A larger code size does not necessary imply better quality or

higher efficiency.

Function Point Metric

Function Points measure software size by quantifying the functionality

provided to the user based solely on logical design and functional

specifications

Function point analysis is a method of quantifying the size and

complexity of a software system in terms of the functions that the

system delivers to the user

It is independent of the computer language, development methodology,

technology or capability of the project team used to develop the

application.

Function point analysis is designed to measure business applications

(not scientific applications) .

32

Function points are independent of the language, tools, or

methodologies used for implementation

Function points can be estimated early in analysis and design

Since function points are based on the system user’s external view of.

3. List the major responsibilities of a software project manager?
[2015][2016][2017]

Ans:-1. Planning the activities

A project manager needs to set an impact strategy that includes a full list of

activities that are important for the project. The key responsibility of a project

manager includes planning. The project manager needs to define the scope of

the project and develop a project schedule accordingly. In general, when a

project manager is planning the activities it is important to target the activities

effectively to do less but well. The procedures should be efficient enough to

deliver the projects within specified time and budget. Also, a backup plan should

be created if the situation demands.

2. Organizing a project team to perform work

Another major role of project managers has focused their team’s efforts on

elaborate spreadsheets, long checklists, and whiteboards. They need to develop

a plan that will support the team to reach their goal easily without hindering the

performance. It is their duty to organize their team to show their full potential. A

project manager will have have to sometimes put on the duties of human

resources like negotiating current employees’ job responsibilities, managing

their times and achieving their commitment to the project, bids may be required

and contracts will need to be reviewed and keeping everyone in check to make

sure that the team’s moves along in accordance with the plan.

3. Delegating the teams

In many situations like a big project, or various tasks involved in a project, it

becomes critical to delegate responsibilities to teams wisely. It is a leadership

style that every project manager has to abide with and be good at it and

eventually it becomes the responsibility of a project manager that needs to be

learned over time. A manager should not misuse this responsibility in putting

blames or degrading the team members. The tasks need to prioritize the tasks

so prioritized to the team members so that they become more effective in their

abilities. The managers should also understand the strength and weakness of

their teams and accordingly delegate the tasks to them. So, be a good leader

who creates an environment that fosters trust through meaningful delegation.

https://journal.thriveglobal.com/identifying-your-leadership-style-can-help-you-become-a-better-leader-a999c2e9908d
https://journal.thriveglobal.com/identifying-your-leadership-style-can-help-you-become-a-better-leader-a999c2e9908d

33

4. Controlling time management

To make a good impression on stakeholders and clients, the project managers

need to look for whether the project has succeeded or failed. A project manager

needs to be able to negotiate achievable deadlines and discuss the same with

the team. They need to develop a project that has the following features:

 Objective

 Process

 Estimating duration

 Schedule development

 Schedule control

5. Managing deliverables

The Project Manager is also responsible for ensuring that the deliverables are

delivered on time and within budget as per the business requirements. Their job

is concerned with asking questions like:

 What are the changes being made in the organization?

 What is the team doing?

 Why are we doing it?

 Is there a business opportunity or risk?

 How are we going to do it?

 What are the popular project management techniques?

 Who is doing what?

 Where are the records and project documents?

 What are the specifications, schedule, meetings etc?

 When are the things being done?

[2MARKS QUESTION]

1. What is software configuration management? [2017]

Ans:- The deadline is rapidly approaching and the team is assembled, ready to

implement the recent revision changes made to both the system hardware and

software. The installation has gone well, and your team is making the final testing

34

arrangements and preparing to demonstrate the results to the waiting clientele. The

first test is executed and the initial screen display fails, panic erupts and your team

scrambles to identify the problem

 A successful and effective CM program will result in:

Improved performance

System compliance with established specifications and guidelines

Lowered probability of errors

Enhanced online availability

2. What is Project Scheduling?[2018]

Ans:-Project scheduling is a mechanism to communicate what tasks need to get done

and which organizational resources will be allocated to complete those tasks in what

timeframe. A project schedule is a document collecting all the work needed to deliver

the project on time.

3. What is project planning? [2016]

ANS:-Project Planning is an aspect of Project Management that focuses a lot on Project

Integration. The project plan reflects the current status of all project activities and is

used to monitor and control the project.

 The Project Planning tasks ensure that various elements of the Project are

coordinated and therefore guide the project execution.

 Project Planning helps in

– Facilitating communication

– Monitoring/measuring the project progress, and

– Provides overall documentation of assumptions/planning decisions

4 .What is activity network and why it is used? [2015][2016]

Ans:-An activity network diagram tool is used extensively in and is necessary for
the identification of a project's critical path (which is used to determine the
expected completion time of the project). Example: Suppose the team is tasked
with improving the process of building a house.

35

CHAPTER-III

[7 marks question answer]

1. What is a SRS document?Exaplain the characteristics and organisation of SRS

document?[2018]

Ans:-

1. Complete

A complete requirements specification must precisely define all the real world situations

that will be encountered and the capability’s responses to them. It must not include

situations that will not be encountered or unnecessary capability features.

2. Consistent

System functions and performance level must be compatible and the required quality

features (reliability, safety, security, etc.) must not contradict the utility of the system.

For example, the only aircraft that is totally safe is one that cannot be started, contains

no fuel or other liquids, and is securely tied down.

3. Correct

The specification must define the desired capability’s real world operational

environment, its interface to that environment and its interaction with that environment.

It is the real world aspect of requirements that is the major source of difficulty in

achieving specification correctness. The real world environment is not well known for

new applications and for mature applications the real world keeps changing. The Y2K

problem with the transition from the year 1999 to the year 2000 is an example of the real

world moving beyond an application’s specified requirements.

4. Modifiable

Related concerns must be grouped together and unrelated concerns must be separated.

Requirements document must have a logical structure to be modifiable.

5. Ranked

Ranking specification statements according to stability and/or importance is established

in the requirements document’s organization and structure. The larger and more

complex the problem addressed by the requirements specification, the more difficult the

task is to design a document that aids rather than inhibits understanding.

6. Testable

A requirement specification must be stated in such as manner that one can test it against

pass/fail or quantitative assessment criteria, all derived from the specification itself

and/or referenced information. Requiring that a system must be “easy” to use is

subjective and therefore is not testable.

7. Traceable

Each requirement stated within the SRS document must be uniquely identified to

achieve traceability. Uniqueness is facilitated by the use of a consistent and logical

scheme for assigning identification to each specification statement within the

requirements document.

8. Unambiguous

A statement of a requirement is unambiguous if it can only be interpreted one way. This

perhaps, is the most difficult attribute to achieve using natural language. The use of

36

weak phrases or poor sentence structure will open the specification statement to

misunderstandings.

9. Valid

To validate a requirements specification all the project participants, managers, engineers

and customer representatives, must be able to understand, analyze and accept or approve

it. This is the primary reason that most specifications are expressed in natural language.

10. Verifiable

In order to be verifiable, requirement specifications at one level of abstraction must be

consistent with those at another level of abstraction. Most, if not all, of these attributes

are subjective and a conclusive assessment of the quality of a requirements specification

requires review and analysis by technical and operational experts in the domain

addressed by the requirements.

CHAPTER-4

[7MARKS QUESTION AND ANSWER]

1.WHAT IS STRUTURE OF CHARTANDSTRUCTUREDDESIGN?DESCRIBE THE

METHODS TO TRANSFORM THE DFD MODEL INTO A STRUCTURE CHART?
[2015][2016][2017]

Ans:-Transaction Analysis

The transaction is identified by studying the discrete event types that
drive the system. For example, with respect to railway reservation, a
customer may give the following transaction stimulus:

37

The three transaction types here are: Check Availability (an enquiry),
Reserve Ticket (booking) and Cancel Ticket (cancellation). On any

given time we will get customers interested in giving any of the above
transaction stimuli. In a typical situation, any one stimulus may be
entered through a particular terminal. The human user would inform
the system her preference by selecting a transaction type from a
menu. The first step in our strategy is to identify such transaction
types and draw the first level breakup of modules in the structure
chart, by creating separate module to co-ordinate various transaction
types. This is shown as follows:

The Main () which is a over-all coordinating module, gets the
information about what transaction the user prefers to do through
TransChoice. The TransChoice is returned as a parameter to Main ().
Remember, we are following our design principles faithfully in
decomposing our modules. The actual details of how
GetTransactionType () is not relevant for Main (). It may for
example, refresh and print a text menu and prompt the user to select
a choice and return this choice to Main (). It will not affect any other
components in our breakup, even when this module is changed later
to return the same input through graphical interface instead of textual
menu. The modules Transaction1 (), Transaction2 () and
Transaction3 () are the coordinators of transactions one, two and
three respectively. The details of these transactions are to be
exploded in the next levels of abstraction.

We will continue to identify more transaction centers by drawing a
navigation chart of all input screens that are needed to get various
transaction stimuli from the user. These are to be factored out in the
next levels of the structure chart (in exactly the same way as seen
before), for all identified transaction centers.

Transform Analysis

Transform analysis is strategy of converting each piece of DFD (may
be from level 2 or level 3, etc.) for all the identified transaction

38

centers. In case, the given system has only one transaction (like a
payroll system), then we can start transformation from level 1 DFD

itself. Transform analysis is composed of the following five steps
[Page-Jones, 1988]:

1. Draw a DFD of a transaction type (usually done during analysis
phase)

2. Find the central functions of the DFD
3. Convert the DFD into a first-cut structure chart
4. Refine the structure chart
5. Verify that the final structure chart meets the requirements of

the original DFD

Let us understand these steps through a payroll system
example:

 Identifying the central transform

The central transform is the portion of DFD that contains the essential
functions of the system and is independent of the particular
implementation of the input and output. One way of identifying
central transform (Page-Jones, 1988) is to identify the centre of the
DFD by pruning off its afferent and efferent branches. Afferent stream
is traced from outside of the DFD to a flow point inside, just before
the input is being transformed into some form of output (For example,
a format or validation process only refines the input – does not
transform it). Similarly an efferent stream is a flow point from where

39

output is formatted for better presentation. The processes between
afferent and efferent stream represent the central transform (marked

within dotted lines above). In the above example, P1 is an input
process, and P6 & P7 are output processes. Central transform
processes are P2, P3, P4& P5 - which transform the given input into
some form of output.

 First-cut Structure Chart

To produce first-cut (first draft) structure chart, first we have to
establish a boss module. A boss module can be one of the central
transform processes. Ideally, such process has to be more of a
coordinating process (encompassing the essence of transformation).

In case we fail to find a boss module within, a dummy coordinating
module is created

In the above illustration, we have a dummy boss module “Produce
Payroll” – which is named in a way that it indicate what the program
is about. Having established the boss module, the afferent stream
processes are moved to left most side of the next level of structure
chart; the efferent stream process on the right most side and the
central transform processes in the middle. Here, we moved a module
to get valid timesheet (afferent process) to the left side (indicated in
yellow). The two central transform processes are move in the middle
(indicated in orange). By grouping the other two central transform
processes with the respective efferent processes, we have created two

modules (in blue) – essentially to print results, on the right side.

The main advantage of hierarchical (functional) arrangement of
module is that it leads to flexibility in the software. For instance, if
“Calculate Deduction” module is to select deduction rates from
multiple rates, the module can be split into two in the next level – one
to get the selection and another to calculate. Even after this change,
the “Calculate Deduction” module would return the same value.

40

 Refine the Structure Chart

Expand the structure chart further by using the different levels of
DFD. Factor down till you reach to modules that correspond to
processes that access source / sink or data stores. Once this is ready,
other features of the software like error handling, security, etc. has to
be added. A module name should not be used for two different
modules. If the same module is to be used in more than one place, it
will be demoted down such that “fan in” can be done from the higher
levels. Ideally, the name should sum up the activities done by the
module and its sub-ordinates.

 Verify Structure Chart vis-à-vis with DFD

Because of the orientation towards the end-product, the software, the
finer details of how data gets originated and stored (as appeared in
DFD) is not explicit in Structure Chart. Hence DFD may still be needed
along with Structure Chart to understand the data flow while creating
low-level design.

2. What is Data Flow Diagram?Write the function of each symbols used in

DFD.Give an example in developing DFD Model for a system? [2016][2017]

Ans:-Data flow diagram (DFD) represents the flows of data between different
processes in a business. It is a graphical technique that depicts information flow and
the transforms that are applied as data move form input to output. It provides a
simple, intuitive method for describing business processes without focusing on the
details of computer systems. DFDs are attractive technique because they provide what
users do rather than what computers do..

Representation of Components

DFDs only involve four symbols. They are:

 Process

 Data Object

 Data Store

 External entity

Process
Transform of incoming data flow(s) to outgoing flow(s).

41

Data Flow
Movement of data in the system.

Data Store

Data repositories for data that are not moving. It may be as simple as a

buffer or a queue or a s sophisticated as a relational database.

External Entity
Sources of destinations outside the specified system boundary.

 Relationship and Rules

Relationship

The DFD may be used for any level of data abstraction. DFD can be partitioned into

levels. Each level has more information flow and data functional details than the

previous level.

Highest level is Context Diagram. Some important points are:

 1 bubble (process) represents the entire system.

 Data arrows show input and output.

 Data Stores NOT shown. They are within the system.

Diagram above is an example of Context Level DFD

Next Level is Level 0 DFD. Some important points are:

 Level 0 DFD must balance with the context diagram it describes.

 Input going into a process are different from outputs leaving the process.

 Data stores are first shown at this level.

42

Diagram above show an example of Level 1 DFD

Next level is Level 1 DFD. Some important points are:

 Level 1 DFD must balance with the Level 0 it describes.

 Input going into a process are different from outputs leaving the process.

 Continue to show data stores.

Diagram above show an example of Level 1 DFD

A DFD may look similar to a flow chart. However, there is a significant difference with

the data flow diagram. The arrows in DFDs show that there is a flow of data between the

two components and not that the component is sending the data that must be executed in

the following component. A component in DFD may not continue execution when

43

sending data and during execution of the component receiving the data. The component

sending data can send multiple sets of data along several connections. In fact, a DFD

node can be a component that never ends.

Rules

 In DFDs, all arrows must be labeled.

 The information flow continuity, that is all the input and the output to each

refinement, must maintain the same in order to be able to produce a consistent

system.

3. Compare the characteristics of function oriented design and object oriented design?

1.FOD: The basic abstractions, which are given to the user, are real world
functions.
OOD: The basic abstractions are not the real world functions but are the data
abstraction where the real world entities are represented.

2.FOD: Functions are grouped together by which a higher level function is Page
on obtained.an eg of this technique isSA/SD.
OOD: Functions are grouped together on the basis of the data they operate
since the classes are associated with their methods.

3.FOD: In this appproach the state information is often represented in a
centralized shared memory.
OOD: In this approach the state information is not represented in a centralized
memory but is implemented or distributed among the objects of the system.

4.FOD approach is mainly used for computation sensitive application,
OOD: whereas OOD approach is mainly used for evolving system which
mimicks a business process or business case.

5. In FOD – we decompose in function/procedure level
OOD: – we decompose in class level

6. FOD: TOp down Approach
OOD: Bottom up approach

7. FOD: It views system as Black Box that performs high level function and later
decompose it detailed function so to be maaped to modules.
OOD: Object-oriented design is the discipline of defining the objects and their
interactions to solve a problem that was identified and documented during
object-oriented analysis.

4.What are different types of cohesion and coupling used in software design? [2015]

Ans:-Cohesion:

 With the help of cohesion the information hiding can be done.

44

 A cohesive subsystem performs only “one task” in software procedure with
little interaction with other modules. In other cohesive subsystem performs
only one thing.

 Different types of cohesion:

1. Coincidentally cohesive: The subsystem sin which the set of tasks are
related with each other loosely then such subsystems are called coincidentally
cohesive.

2. Logically cohesive: A subsystem that performs the tasks that are logically
related with each other is called logically cohesive.

3. Temporal cohesive: The subsystem in which the tasks need to be executed
in some specific time span is called temporal cohesive.

4. Procedural cohesive: When processing elements of a subsystem are related
with one another and must be executed in some specific order, such
subsystems is called Procedural cohesive.

5. Communication cohesion: when the processing elements of a subsystem
share the data then such subsystem is called communication cohesive.

6. Sequential cohesion: when the output of 1 subsystem is given as input for
other subsystem is called Sequential cohesion.

Following fog shows layer cohesion.

Coupling:

 Coupling effectively represents how the subsystems can be connected
with other subsystem or with the outside world.

 Coupling is a measure of interconnection among subsystems in a program
structure.

 Coupling depends on the interface complexity between subsystems.
 The gaol is to strive for the possible coupling among the subsystems in

software design.
 The property of good coupling is that it should reduce or avoid change

impact and ripple effects.it should also reduce the cost in program
changes, testing and maintenance.

 Various type of coupling:

45

5. Data coupling: The data coupling is possible by parameter passing or data
interaction.

6. Control coupling: The modules share related control data in control
coupling.

7. Common coupling: In common coupling common data or global data is
shared among the modules.

8. Content coupling: Content coupling occurs when one module makes use of
data or control information maintained in another module.

[CHAPTER-5]

[7MARKS LONG QUESTION]

1. What is user interface ?Describe the characteristics of a good user

interface?[2017]

Ans:-The points to be kept in mind while designing good user interface are:

1. Clear and Simple : A good user interface provides a clear understanding of
what is happening behind the scenes or provides visibility to the functioning of
the system. The whole purpose of user interface design is to enable the user to
interact with your system by communicating meaning and function. Obviously, if
the interface too complex to navigate, it might annoy the user and make him or
her leave the page quickly and move on to some thing else. Make sure the
interface is understandable and simple to navigate through.

46

2. Creative but familiar : When the users are familiar with something and know
how it behaves, navigation becomes easier. In effect, the user expects to see
what is familiar to him or her. It is good to identify things that your users are
accustomed to and integrate them into your user interface. At the same time,
users appreciate some thing creative, not so run-off-the- mill experience. But
while being creative it should be kept in mind not to lose the familiarity
component.

3. Intuitive and consistent : The controls and information must be laid out in an
intuitive and consistent way for an interface to be easy to use and navigate. It’s
not good to drastically change the lay out to achieve the changing functionality
the business may require from time to time. The design process should be
based on the logic of usability -features that are the most frequently used should
be the most prominent in the UI and controls should be made consistent so that
users know how to repeat their action.

4. Responsive : If the interface fails to keep up with the demands of the user, this
will significantly diminish their experience and can result in frustration,
particularly when trying to perform basic tasks. Wherever possible, the interface
should move swiftly in pace with the user. Being responsive means being fast.
The interface, if not the program behind it, should work fast. Waiting for things to
load might make the user frustrated.

5. Maintainable : A UI should have the capacity for and changes to be integrated
without causing a conflict of interest. For instance, you may need to add an
additional feature to the software, if your interface is so convoluted that there is
no space to draw attention to this feature without compromising something else
or appearing unaesthetic, then this signifies a flaw in design.

2. Define user interface .State and Explain the interface design activities?[2018]

Ans:-User interface design (UI) or user interface engineering is the design of user

interfaces for machines and software, such as computers, home appliances, mobile devices,
and other electronic devices, with the focus on maximizing usability and the user experience.

-> User interface is the front-end application view to which user interacts in order

to use the software. User can manipulate and control the software as well as

hardware by means of user interface. Today, user interface is found at almost

every place where digital technology exists, right from computers, mobile

phones, cars, music players, airplanes, ships etc.

User interface is part of software and is designed such a way that it is expected

to provide the user insight of the software. UI provides fundamental platform for

human-computer interaction.

UI can be graphical, text-based, audio-video based, depending upon the

underlying hardware and software combination. UI can be hardware or software

or a combination of both.

47

The software becomes more popular if its user interface is:

 Attractive

 Simple to use

 Responsive in short time

 Clear to understand

 Consistent on all interfacing screens

UI is broadly divided into two categories:

 Command Line Interface

 Graphical User Interface

User Interface Design Activities

There are a number of activities performed for designing user interface. The

process of GUI design and implementation is alike SDLC. Any model can be used

for GUI implementation among Waterfall, Iterative or Spiral Model.

A model used for GUI design and development should fulfill these GUI specific

steps.

 GUI Requirement Gathering - The designers may like to have list of all

functional and non-functional requirements of GUI. This can be taken from

user and their existing software solution.

 User Analysis - The designer studies who is going to use the software

GUI. The target audience matters as the design details change according to

the knowledge and competency level of the user. If user is technical savvy,

advanced and complex GUI can be incorporated. For a novice user, more

information is included on how-to of software.

 Task Analysis - Designers have to analyze what task is to be done by the

software solution. Here in GUI, it does not matter how it will be done.

Tasks can be represented in hierarchical manner taking one major task and

dividing it further into smaller sub-tasks. Tasks provide goals for GUI

48

presentation. Flow of information among sub-tasks determines the flow of

GUI contents in the software.

 GUI Design & implementation - Designers after having information

about requirements, tasks and user environment, design the GUI and

implements into code and embed the GUI with working or dummy software

in the background. It is then self-tested by the developers.

 Testing - GUI testing can be done in various ways. Organization can have

in-house inspection, direct involvement of users and release of beta

version are few of them. Testing may include usability, compatibility, user

acceptance etc.

[5MARKS QUESTION AND ANSWER]

1. Discuss the several types of designing approaches used in software

engineering?[2018]

 Ans:-Requirements Analysis

o Extracting the requirements of a desired software product is the first task in
creating it. While customers probably believe they know what the software is to
do, it may require skill and experience in software engineering to recognize
incomplete, ambiguous or contradictory requirements.

 Specification

o Specification is the task of precisely describing the software to be written, in a
mathematically rigorous way. In practice, most successful specifications are
written to understand and fine-tune applications that were already well-
developed, although safety-critical software systems are often carefully specified
prior to application development. Specifications are most important for external
interfaces that must remain stable.

 Software architecture

o The architecture of a software system refers to an abstract representation of
that system. Architecture is concerned with making sure the software system
will meet the requirements of the product, as well as ensuring that future
requirements can be addressed.

 Implementation

o Reducing a design to code may be the most obvious part of the software
engineering job, but it is not necessarily the largest portion.

 Testing

o Testing of parts of software, especially where code by two different engineers
must work together, falls to the software engineer.

 Documentation

49

o An important task is documenting the internal design of software for the
purpose of future maintenance and enhancement.

 Training and Support

o A large percentage of software projects fail because the developers fail to
realize that it doesn't matter how much time and planning a development team
puts into creating software if nobody in an organization ends up using it. People
are occasionally resistant to change and avoid venturing into an unfamiliar area,
so as a part of the deployment phase, its very important to have training classes
for the most enthusiastic software users (build excitement and confidence),
shifting the training towards the neutral users intermixed with the avid
supporters, and finally incorporate the rest of the organization into adopting the
new software. Users will have lots of questions and software problems which
leads to the next phase of software.

 Maintenance

o Maintaining and enhancing software to cope with newly discovered problems or
new requirements can take far more time than the initial development of the
software. Not only may it be necessary to add code that does not fit the original
design but just determining how software works at some point after it is
completed may require significant effort by a software engineer. About 60% of
all software engineering work is maintenance, but this statistic can be
misleading. A small part of that is fixing bugs. Most maintenance is extending
systems to do new things, which in many ways can be considered new work.

[2marks question answer]

1. What is software configuration management?

Ans:-Configuration Management helps organizations to systematically
manage, organize, and control the changes in the documents, codes, and
other entities during the Software Development Life Cycle. It is abbreviated as
the SCM process. It aims to control cost and work effort involved in making
changes to the software system. The primary goal is to increase productivity
with minimal mistakes.

2. What is software documentation?

Ans:- All software documentation can be divided into two main categories:

 Product documentation
 Process documentation

Product documentation describes the product that is being developed and
provides instructions on how to perform various tasks with it. Product
documentation can be broken down into:

 System documentation and

50

 User documentation
System documentation represents documents that describe the system itself
and its parts. It includes requirements documents, design decisions, architecture
descriptions, program source code, and help guides.
User documentation covers manuals that are mainly prepared for end-users of
the product and system administrators. User documentation includes tutorials,
user guides, troubleshooting manuals, installation, and reference manuals.
Process documentation represents all documents produced during
development and maintenance that describe… well, process. The common
examples of process-related documents are standards, project documentation,
such as project plans, test schedules, reports, meeting notes, or even business
correspondence.

3.Define CASE?
Ans:-Computer-aided software engineering (CASE) is the domain
of software tools used to design and implement applications. ... CASE
software is often associated with methods for the development of information
systems together with automated tools that can be used in
the software development process.

[CHAPTER-6]

[7MARKS LONG QUESTION]

1. What is performance testing is carried out? Discuss some performance test?

[2018]

Ans:-Performance testing is the process of determining the speed or
effectiveness of a computer, network, software program or device. This
process can involve quantitative tests done in a lab, such as measuring
the response time or the number of MIPS (millions of instructions per second)
at which a system functions. Qualitative attributes such
as reliability, scalability and interoperability may also be evaluated.
Performance testing is often done in conjunction with stress testing.

Types of Performance Testing

 Load testing - checks the application's ability to perform under anticipated
user loads. The objective is to identify performance bottlenecks before the
software application goes live.

https://searchnetworking.techtarget.com/definition/network
https://searchmicroservices.techtarget.com/definition/software
https://searchnetworking.techtarget.com/definition/response-time
https://searchitoperations.techtarget.com/definition/MIPS-million-instructions-per-second
https://whatis.techtarget.com/definition/reliability
https://searchdatacenter.techtarget.com/definition/scalability
https://searchmicroservices.techtarget.com/definition/interoperability
https://searchsoftwarequality.techtarget.com/definition/stress-testing

51

 Stress testing - involves testing an application under extreme workloads
to see how it handles high traffic or data processing. The objective is to
identify breaking point of an application.

 Endurance testing - is done to make sure the software can handle the
expected load over a long period of time.

 Spike testing - tests the software's reaction to sudden large spikes in the
load generated by users.

 Volume testing - Under Volume Testing large no. of. Data is populated in
database and the overall software system's behavior is monitored. The
objective is to check software application's performance under varying
database volumes.

 Scalability testing - The objective of scalability testing is to determine the
software application's effectiveness in "scaling up" to support an increase
in user load. It helps plan capacity addition to your software system.

 Performance Testing Process
 Identify your testing environment - Know your physical test

environment, production environment and what testing tools are available.
Understand details of the hardware, software and network configurations
used during testing before you begin the testing process. It will help
testers create more efficient tests. It will also help identify possible
challenges that testers may encounter during the performance testing
procedures.

 Identify the performance acceptance criteria - This includes goals and
constraints for throughput, response times and resource allocation. It is
also necessary to identify project success criteria outside of these goals
and constraints. Testers should be empowered to set performance criteria
and goals because often the project specifications will not include a wide
enough variety of performance benchmarks. Sometimes there may be
none at all. When possible finding a similar application to compare to is a
good way to set performance goals.

 Plan & design performance tests - Determine how usage is likely to vary
amongst end users and identify key scenarios to test for all possible use
cases. It is necessary to simulate a variety of end users, plan performance
test data and outline what metrics will be gathered.

 Configuring the test environment - Pre

2. What do you mean by coding?How code walk through is

conducted.explain? [2016][2017]

It also refers to methods for the development of information systems
together with automated tools that can be used in the software
development process. ... The CASE functions include analysis, design,
and programming.

 Static Testing v/s Dynamic Testing

52

 Static testing is done basically to test the software work products ,
requirement specifications, test plan , user manual etc. They are not
executed, but tested with the set of some tools and
processes. It provides a powerful way to improve the quality and productivity
of software development.

Static Testing v/s Dynamic Testing

Dynamic Testing is basically when execution is done on the software code as a
technique to detect defects and to determine quality attributes of the code. With
dynamic testing methods,
software is executed using a set of inputs and its output is then compared to the
the expected results.
 Static Review and its advantages

Static Review provides a powerful way to improve the quality and productivity of
software development to recognize and fix their own defects early in the
software development process.
Nowadays, all software organizations are conducting reviews in all major
aspects of their work including requirements, design, implementation, testing,
and maintenance.

Advantages of Static Reviews:-

1. Types of defects that can be found during static testing are: deviations from
standards, missing requirements, design defects, non-maintainable code and
inconsistent interface specifications.

2. Since static testing can start early in the life cycle, early feedback on quality
issues can be established, e.g. an early validation of user requirements and not
just late in the life cycle during
acceptance testing.

3. By detecting defects at an early stage, rework costs are relatively low and
thus a relatively cheap improvement of the quality of software products can be
achieved.

4. The feedback and suggestions document from the static testing process
allows for process improvement, which supports the avoidance of similar errors
being made in the future.

 Roles and Responsibilities in a Review

There are various roles and responsibilities defined for a review process. Within
a review team, four types of participants can be distinguished: moderator,
author, scribe.

53

3..Explain different types of white box testing used to design test cases

for testing the software? [2015][2016][2017]

Ans:-If we go by the definition, “White box testing” (also known as clear, glass
box or structural testing) is a testing technique which evaluates the code and the
internal structure of a program.

White box testing involves looking at the structure of the code. When you know
the internal structure of a product, tests can be conducted to ensure that the
internal operations performed according to the specification. And all internal
components have been adequately exercised.

White Box Testing is coverage of the specification in the code:
1. Code coverage
2. Segment coverage: Ensure that each code statement is executed once.
3. Branch Coverage or Node Testing: Coverage of each code branch in from
all possible was.
4. Compound Condition Coverage: For multiple conditions test each condition
with multiple paths and combination of the different path to reach that condition.
5. Basis Path Testing: Each independent path in the code is taken for testing.
6. Data Flow Testing (DFT): In this approach you track the specific variables
through each possible calculation, thus defining the set of intermediate paths
through the code.DFT tends to reflect dependencies but it is mainly through
sequences of data manipulation. In short, each data variable is tracked and its
use is verified. This approach tends to uncover bugs like variables used but not
initialize, or declared but not used, and so on.
7. Path Testing: Path testing is where all possible paths through the code are
defined and covered. It’s a time-consuming task.
8. Loop Testing: These strategies relate to testing single loops, concatenated
loops, and nested loops. Independent and dependent code loops and values are
tested by this approach.
Why we perform WBT?
To ensure:

 That all independent paths within a module have been exercised at least
once.

 All logical decisions verified on their true and false values.
 All loops executed at their boundaries and within their operational bounds

internal data structures validity.
To discover the following types of bugs:

 Logical error tend to creep into our work when we design and implement
functions, conditions or controls that are out of the program

 The design errors due to difference between logical flow of the program
and the actual implementation

 Typographical errors and syntax checking

54

Does this testing requires detailed programming skills?
We need to write test cases that ensure the complete coverage of the program
logic.
For this we need to know the program well i.e. We should know the specification
and the code to be tested. Knowledge of programming languages and logic is
required for this type of testing.

4 . What are the various debugging approaches and guidelines
used in s/w development?[2017]

 On successful culmination of software testing, debugging is performed.
Debugging is defined as a process of analyzing and removing the error. It
is considered necessary in most of the newly developed software or
hardware and in commercial products/ personal application programs.
For complex products, debugging is done at all the levels of the testing.

 Debugging is considered to be a complex and time-consuming process
since it attempts to remove errors at all the levels of testing. To perform
debugging, debugger (debugging tool) is used to reproduce the conditions
in which failure occurred, examine the program state, and locate the cause.
With the help of debugger, programmers trace the program execution step
by step (evaluating the value of variables) and halt the execution wherever
required to reset the program variables. Note that some programming
language packages include a debugger for checking the code for errors
while it is being written.

The Debugging Process

During debugging, errors are encountered that range from less damaging (like
input of an incorrect function) to catastrophic (like system failure, which lead to
economic or physical damage). Note that with the increase in number of errors,
the amount of effort to find their causes also increases.

Once errors are identified in a software system, to debug the problem, a number
of steps are followed, which are listed below.

1. Defect confirmation/identification: A problem is identified in a system and
a defect report is created. A software engineer maintains and analyzes this error
report and finds solutions to the following questions.

1. Does a .defect exist in the system?
2. Can the defect be reproduced?
3. What is the expected/desired behavior of the system?
4. What is the actual behavior?
2. Defect analysis: If the defect is genuine, the next step is to understand the root

cause of the problem. Generally, engineers debug by starting a debugging tool
(debugger) and they try to understand the root cause of the problem by following
a step-by-step execution of the program.

https://www.softwaretestinghelp.com/how-to-write-effective-test-cases-test-cases-procedures-and-definitions/

55

3. Defect resolution: Once the root cause of a problem is identified, the error
can be resolved by making an appropriate change to the system by fixing the
problem.

When the debugging process ends, the software is retested to ensure that no
errors are left undetected. Moreover, it checks that no new errors are introduced
in the software while making some changes to it during the debugging process.

Debugging Strategies

As debugging is a difficult and time-consuming task, it is essential to develop a
proper debugging strategy. This strategy helps in performing the process of
debugging easily and efficiently. The commonly-used debugging strategies are
debugging by brute force, induction strategy, deduction strategy, backtracking
strategy, and debugging by testing.

[CHAPTER-7]

1.Q:-Importance, Requirement and Procedure to Gain ISO

9000 Certification for Software Industry?[2018]

Ans:- ISO (International Standards Organization) is a consortium of 63 countries

established to formulate and foster standardisation. ISO published its 9000

series of standards in 1987.

The ISO 9000 standard specifies the guidelines for maintaining a quality system. ISO

9000 specifies a set of guidelines for repeatable and high quality product development.

ISO 9000 is a series of three standards: ISO 9001, ISO 9002, and ISO

9003.

ISO 9001: This standard applies to the organisations engaged in design,development,

production, and servicing of goods.

 This standard is applicable to most software development organisations.

ISO 9002: This standard applies to those organisations which do not

design products but are only involved in production. Examples include

steel and car \ manufacturing industries.

ISO 9003: This standard applies to organisations involved only in

installation and testing of the products.

Requirement of ISO 9000 Certification

Confidence of customers in an organisation increases when the

organisation qualifies for ISO 9001 certification.

ISO 9000 requires a well-documented software production process.

ISO 9000 makes the development process focused, efficient, and

cost-effective.

ISO 9000 certification points out the weak points of an organization

and recommends remedial action.

ISO 9000 sets the basic framework for the development of an

optimal process.

Procedure to gain ISO 9000 Certification

56

An organisation intending to obtain ISO 9000 certification applies to a ISO

9000 registrar for registration. The ISO 9000 registration process consists

of the following stages:

Application: Once an organisation decides to go for ISO 9000

certification, it applies to a register for registration.

Pre-assessment: During this stage, the registrar makes a rough

assessment of the organisation.

Document Review and Adequacy of Audit : During this stage, the

registrar reviews the documents submitted by the organisation and

makes suggestions for possible improvements.

Compliance audit: During this stage, the registrar checks whether the

suggestions made by it during review have been complied with by the

organisation or not.

Continued Surveillance: The registrar continues to monitorthe

organisation, though periodically.

